Biofilms deform soft surfaces and disrupt epithelia

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biofilms on Plant Surfaces

Land plants modify the terrestrial environment extensively by nutrient acquisition, water utilization, physical disruption and cohesion of the soil, and the release of complex exudate materials. Decaying plant matter is also a major source of organic material in soils. Large numbers of microorganisms associate with and flourish on, within, and around plants, colonizing virtually all exposed tis...

متن کامل

Bacterial Biofilms on Fungal Surfaces

Bacterial biofilm formation on fungi participates in the synergistic degradation of substrates, antagonism of fungal growth, bacterial utilization of fungi as nutrient sources, and the formation of more complex synergistic associations for the purposes of nutrient acquisition. While bacterial biofilm formation has been described in many systems, the molecular mechanisms that govern these intera...

متن کامل

Biofilms: Microbial Life on Surfaces

Microorganisms attach to surfaces and develop biofilms. Biofilm-associated cells can be differentiated from their suspended counterparts by generation of an extracellular polymeric substance (EPS) matrix, reduced growth rates, and the up- and down- regulation of specific genes. Attachment is a complex process regulated by diverse characteristics of the growth medium, substratum, and cell surfac...

متن کامل

Targeting Fibronectin To Disrupt In Vivo Candida albicans Biofilms.

New drug targets are of great interest for the treatment of fungal biofilms, which are routinely resistant to antifungal therapies. We theorized that the interaction of Candida albicans with matricellular host proteins would provide a novel target. Here, we show that an inhibitory protein (FUD) targeting Candida-fibronectin interactions disrupts biofilm formation in vitro and in vivo in a rat v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: eLife

سال: 2020

ISSN: 2050-084X

DOI: 10.7554/elife.56533